Theoretical Foundations of Nonlinear Resonant Ultrasound Spectroscopy
نویسندگان
چکیده
منابع مشابه
Non Destructive Characterization of Cortical Bone Micro-Damage by Nonlinear Resonant Ultrasound Spectroscopy
The objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several ste...
متن کاملApplying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete.
Nonlinear resonant ultrasound spectroscopy (NRUS) consists of evaluating one or more resonant frequency peak shifts while increasing excitation amplitude. NRUS exhibits high sensitivity to global damage in a large group of materials. Most studies conducted to date are aimed at interrogating the mechanical damage influence on the nonlinear response, applying bending, or longitudinal modes. The s...
متن کاملNonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone.
Nonlinear resonant ultrasound spectroscopy (NRUS) is a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency(ies) of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity is manifest by a shift in the resonance frequency. This study shows the feasibility of t...
متن کاملBayesian inference of elastic properties with resonant ultrasound spectroscopy.
Bayesian modeling and Hamiltonian Monte Carlo (HMC) are utilized to formulate a robust algorithm capable of simultaneously estimating anisotropic elastic properties and crystallographic orientation of a specimen from a list of measured resonance frequencies collected via Resonance Ultrasound Spectroscopy (RUS). Unlike typical optimization procedures which yield point estimates of the unknown pa...
متن کاملMeasuring Dislocation Density in aluminum with Resonant Ultrasound Spectroscopy
Dislocations in a material will, when present in enough numbers, change the speed of propagation of elastic waves. Consequently, two material samples, differing only in dislocation density, will have different elastic constants, a quantity that can be measured using Resonant Ultrasound Spectroscopy. Measurements of this effect on aluminum samples are reported. They compare well with the predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materia Japan
سال: 2015
ISSN: 1340-2625,1884-5843
DOI: 10.2320/materia.54.454